六年级奥数题及答案解析

摘要:   1、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

  1、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?

  解答:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。

  2、已知定由"若大于3的三个质数a、b、c满足关系式2a+5b=c,则a+b+c是整数n的倍数"。试问:这个定理中的整数n的最大可能值是多少?请证明你的结论。

  解答:先将a+b+c化为3(a+2b)的形式,说明a+b+c是3的倍数,然后利用整除的性质对a、b被3整除后的余数加以讨论得出a+2b也为3的倍数。

  ∵ =a+b+2a+5b=3(a+2b),

  显然,3│a+b+c

  若设a、b被3整除后的余数分别为ra、rb,则ra≠0, rb ≠0。

  若ra≠rb,则ra=2,rb=1或ra=1,rb=2,则2a+5b =2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2);3(2P+59+4),即2a+5b为合数与已知c为质数矛盾。

  ∴ 只有ra=rb,则ra=rb=1或ra=rb=2。

  于是a+2b必是3的倍数,从而a+b+c是9的倍数。

  又2a+5b=2×11十5×5=47时,=

  a+b+c=11+5+47=63,

  2a+5b =2×13十5×7=61时,

  a+b+c =13+7+61=81,

  而(63,81)=9,故9为最大可能值。

  【小结】由余数切入进行讨论,是解决整除问题的重要方法。

  3、数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。

  解答:逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。

  ①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。

  ②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.

  ③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。

  综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。


     
    来源: 华清园小升初网